Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Anat ; 250: 152142, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37572763

RESUMO

BACKGROUND: Osteocytes are the most abundant cell type in adult bone, and the morphological characteristics of osteocytes and their lacunae appear to influence bone mass and fragility. Although conventional computed tomography (CT) has contributed greatly to advances in bone morphometry, capturing details of the entire hierarchical assembly, e.g., osteocyte lacuna parameters, has been limited by the analytical performance of CT (> 1 µm resolution). METHODS: We used high-resolution (700 nm) micro-CT to evaluate and compare the osteocyte lacuna parameters over a large scale, i.e., in a maximum of about 45,700 lacunae (average), in tibial metaphyseal cortical bones of wild-type (WT) and αKlotho-hypomorphic (kl/kl) mice, the latter a model that exhibits osteopenia and aberrant osteocytes. RESULTS: Of osteocyte lacuna parameters, lacunar surface per lacunar volume were significantly lower and lacuna diameter were significantly larger in kl/kl mice compared to WT mice. By analysis of individual osteocyte lacunae, we found that lacunar sphericity in kl/kl mice was higher than that in WT mice, and the diameters in the major and the minor axes were respectively lower and higher in kl/kl mice, especially at the proximal site of the region of interest. CONCLUSION: We successfully assessed osteocyte lacuna parameters on the largest scale in mice reported to date and found that the shape of osteocyte lacunae of kl/kl mice are significantly different from those of WT mice. Although the mechanisms underlying the lacunar shape differences observed are not yet clear, changes in lacunar geometry are known to affect the transitions of strains to the osteocyte microenvironment and likely local osteocyte response(s). Thus, the fact that the differences are limited to the mesial region near the primary spongiosa suggests the likelihood of site-specific anomalies in mechanosensitive effects in kl/kl osteocytes with consequent site-specific effects bone metabolism and function.


Assuntos
Osso e Ossos , Osteócitos , Camundongos , Animais , Microtomografia por Raio-X
2.
Bone Rep ; 18: 101692, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37275784

RESUMO

Mutations in a common extracellular domain of fibroblast growth factor receptor (FGFR)-2 isoforms (type IIIb and IIIc) cause craniosynostosis syndrome and chondrodysplasia syndrome. FGF10, a major ligand for FGFR2-IIIb and FGFR1-IIIb, is a key participant in the epithelial-mesenchymal interactions required for morphogenetic events. FGF10 also regulates preadipocyte differentiation and early chondrogenesis in vitro, suggesting that FGF10-FGFR signaling may be involved in craniofacial skeletogenesis in vivo. To test this hypothesis, we used a tet-on doxycycline-inducible transgenic mouse model (FGF10 Tg) to overexpress Fgf10 from embryonic day 12.5. Fgf10 expression was 73.3-fold higher in FGF10 Tg than in wild-type mice. FGF10 Tg mice exhibited craniofacial anomalies, such as a short rostrum and mandible, an underdeveloped (cleft) palate, and no tympanic ring. Opposite effects on chondrogenesis in different anatomical regions were seen, e.g., hyperplasia in the nasal septum and hypoplasia in the mandibular condyle. We found an alternative splicing variant of Fgfr2-IIIb with a predicted translation product lacking the transmembrane domain, and suggesting a soluble form of FGFR2-IIIb (sFGFR2-IIIb), differentially expressed in some of the craniofacial bones and cartilages. Thus, excessive FGF10 may perturb signal transduction of the FGF-FGFR, leading to craniofacial skeletal abnormalities in FGF10 Tg mice.

3.
Int J Mol Sci ; 22(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201781

RESUMO

We recently reported an unexpected role of osteoblast-derived matrix vesicles in the delivery of microRNAs to bone matrix. Of such microRNAs, we found that miR-125b inhibited osteoclast formation by targeting Prdm1 encoding a transcriptional repressor of anti-osteoclastogenesis factors. Transgenic (Tg) mice overexpressing miR-125b in osteoblasts by using human osteocalcin promoter grow normally but exhibit high trabecular bone mass. We have now further investigated the effects of osteoblast-mediated miR-125b overexpression on skeletal morphogenesis and remodeling during development, aging and in a situation of skeletal repair, i.e., fracture healing. There were no significant differences in the growth plate, primary spongiosa or lateral (periosteal) bone formation and mineral apposition rate between Tg and wild-type (WT) mice during early bone development. However, osteoclast number and medial (endosteal) bone resorption were less in Tg compared to WT mice, concomitant with increased trabecular bone mass. Tg mice were less susceptible to age-dependent changes in bone mass, phosphate/amide I ratio and mechanical strength. In a femoral fracture model, callus formation progressed similarly in Tg and WT mice, but callus resorption was delayed, reflecting the decreased osteoclast numbers associated with the Tg callus. These results indicate that the decreased osteoclastogenesis mediated by miR-125b overexpression in osteoblasts leads to increased bone mass and strength, while preserving bone formation and quality. They also suggest that, in spite of the fact that single miRNAs may target multiple genes, the miR-125b axis may be an attractive therapeutic target for bone loss in various age groups.


Assuntos
Desenvolvimento Ósseo , Reabsorção Óssea/patologia , MicroRNAs/genética , Osteoblastos/patologia , Osteoclastos/patologia , Osteogênese , Fatores Etários , Animais , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/metabolismo , Osteoblastos/metabolismo , Osteoclastos/metabolismo
4.
JBMR Plus ; 5(6): e10496, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34189385

RESUMO

The current paradigm of osteoblast fate is that the majority undergo apoptosis, while some further differentiate into osteocytes and others flatten and cover bone surfaces as bone lining cells. Osteoblasts have been described to exhibit heterogeneous expression of a variety of osteoblast markers at both transcriptional and protein levels. To explore further this heterogeneity and its biological significance, Venus-positive (Venus+) cells expressing the fluorescent protein Venus under the control of the 2.3-kb Col1a1 promoter were isolated from newborn mouse calvariae and subjected to single-cell RNA sequencing. Functional annotation of the genes expressed in 272 Venus+ single cells indicated that Venus+ cells are osteoblasts that can be categorized into four clusters. Of these, three clusters (clusters 1 to 3) exhibited similarities in their expression of osteoblast markers, while one (cluster 4) was distinctly different. We identified a total of 1920 cluster-specific genes and pseudotime ordering analyses based on established concepts and known markers showed that clusters 1 to 3 captured osteoblasts at different maturational stages. Analysis of gene co-expression networks showed that genes involved in protein synthesis and protein trafficking between endoplasmic reticulum (ER) and Golgi are active in these clusters. However, the cells in these clusters were also defined by extensive heterogeneity of gene expression, independently of maturational stage. Cells of cluster 4 expressed Cd34 and Cxcl12 with relatively lower levels of osteoblast markers, suggesting that this cell type differs from actively bone-forming osteoblasts and retain or reacquire progenitor properties. Based on expression and machine learning analyses of the transcriptomes of individual osteoblasts, we also identified genes that may be useful as new markers of osteoblast maturational stages. Taken together, our data show much more extensive heterogeneity of osteoblasts than previously documented, with gene profiles supporting diversity of osteoblast functional activities and developmental fates. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
J Endocrinol ; 237(3): 285-300, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29632215

RESUMO

The type I transmembrane protein αKlotho (Klotho) serves as a coreceptor for the phosphaturic hormone fibroblast growth factor 23 (FGF23) in kidney, while a truncated form of Klotho (soluble Klotho, sKL) is thought to exhibit multiple activities, including acting as a hormone, but whose mode(s) of action in different organ systems remains to be fully elucidated. FGF23 is expressed primarily in osteoblasts/osteocytes and aberrantly high levels in the circulation acting via signaling through an FGF receptor (FGFR)-Klotho coreceptor complex cause renal phosphate wasting and osteomalacia. We assessed the effects of exogenously added sKL on osteoblasts and bone using Klotho-deficient (kl/kl) mice and cell and organ cultures. sKL induced FGF23 signaling in bone and exacerbated the hypomineralization without exacerbating the hyperphosphatemia, hypercalcemia and hypervitaminosis D in kl/kl mice. The same effects were seen in rodent bone models in vitro, in which we also detected formation of a sKL complex with FGF23-FGFR and decreased Phex (gene responsible for X-linked hypophosphatemic rickets (XLH)/osteomalacia) expression. Further, sKL-FGF23-dependent hypomineralization in vitro was rescued by soluble PHEX. These data suggest that exogenously added sKL directly participates in FGF23 signaling in bone and that PHEX is a downstream effector of the sKL-FGF23-FGFR axis in bone.


Assuntos
Calcificação Fisiológica/efeitos dos fármacos , Glucuronidase/genética , Glucuronidase/farmacologia , Osteomalacia/genética , Raquitismo/genética , Animais , Animais Recém-Nascidos , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/fisiologia , Células Cultivadas , Feminino , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/metabolismo , Proteínas Klotho , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteoblastos/efeitos dos fármacos , Osteoblastos/fisiologia , Osteócitos/efeitos dos fármacos , Osteócitos/fisiologia , Osteomalacia/sangue , Osteomalacia/induzido quimicamente , Osteomalacia/patologia , Endopeptidase Neutra Reguladora de Fosfato PHEX/efeitos dos fármacos , Endopeptidase Neutra Reguladora de Fosfato PHEX/metabolismo , Gravidez , Isoformas de Proteínas/farmacologia , Ratos , Ratos Wistar , Raquitismo/sangue , Raquitismo/induzido quimicamente , Raquitismo/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Solubilidade
8.
J Cell Physiol ; 232(9): 2528-2537, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27704558

RESUMO

The bone organ integrates the activity of bone tissue, bone marrow, and blood vessels and the factors ensuring this coordination remain ill defined. Bone sialoprotein (BSP) is with osteopontin (OPN) a member of the small integrin binding ligand N-linked glycoprotein (SIBLING) family, involved in bone formation, hematopoiesis and angiogenesis. In rodents, bone marrow ablation induces a rapid formation of medullary bone which peaks by ∼8 days (d8) and is blunted in BSP-/- mice. We investigated the coordinate hematopoietic and vascular recolonization of the bone shaft after marrow ablation of 2 month old BSP+/+ and BSP-/- mice. At d3, the ablated area in BSP-/- femurs showed higher vessel density (×4) and vascular volume (×7) than BSP+/+. Vessel numbers in the shaft of ablated BSP+/+ mice reached BSP-/- values only by d8, but with a vascular volume which was twice the value in BSP-/-, reflecting smaller vessel size in ablated mutants. At d6, a much higher number of Lin- (×3) as well as LSK (Lin- IL-7Rα- Sca-1hi c-Kithi , ×2) and hematopoietic stem cells (HSC: Flt3- LSK, ×2) were counted in BSP-/- marrow, indicating a faster recolonization. However, the proportion of LSK and HSC within the Lin- was lower in BSP-/- and more differentiated stages were more abundant, as also observed in unablated bone, suggesting that hematopoietic differentiation is favored in the absence of BSP. Interestingly, unablated BSP-/- femur marrow also contains more blood vessels than BSP+/+, and in both intact and ablated shafts expression of VEGF and OPN are higher, and DMP1 lower in the mutants. In conclusion, bone marrow ablation in BSP-/- mice is followed by a faster vascular and hematopoietic recolonization, along with lower medullary bone formation. Thus, lack of BSP affects the interplay between hematopoiesis, angiogenesis, and osteogenesis, maybe in part through higher expression of VEGF and the angiogenic SIBLING, OPN. J. Cell. Physiol. 232: 2528-2537, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Medula Óssea/irrigação sanguínea , Medula Óssea/metabolismo , Fêmur/irrigação sanguínea , Fêmur/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Sialoproteína de Ligação à Integrina/deficiência , Neovascularização Fisiológica , Osteogênese , Técnicas de Ablação , Animais , Biomarcadores/metabolismo , Medula Óssea/patologia , Medula Óssea/cirurgia , Proliferação de Células , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/metabolismo , Fêmur/patologia , Fêmur/cirurgia , Genótipo , Células-Tronco Hematopoéticas/patologia , Sialoproteína de Ligação à Integrina/genética , Masculino , Camundongos Knockout , Osteopontina/genética , Osteopontina/metabolismo , Fenótipo , Transdução de Sinais , Fatores de Tempo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
9.
Oncotarget ; 7(47): 77071-77086, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27776343

RESUMO

Bone metastases are one of the main complications of prostate cancer and they are incurable. We investigated whether and how estrogen receptor-related receptor alpha (ERRα) is involved in bone tumor progression associated with advanced prostate cancer. By meta-analysis, we first found that ERRα expression is correlated with castration-resistant prostate cancer (CRPC), the hallmark of progressive disease. We then analyzed tumor cell progression and the associated signaling pathways in gain-of-function/loss-of-function CRPC models in vivo and in vitro. Increased levels of ERRα in tumor cells led to rapid tumor progression, with both bone destruction and formation, and direct impacts on osteoclasts and osteoblasts. VEGF-A, WNT5A and TGFß1 were upregulated by ERRα in tumor cells and all of these factors also significantly and positively correlated withERRα expression in CRPC patient specimens. Finally, high levels of ERRα in tumor cells stimulated the pro-metastatic factor periostin expression in the stroma, suggesting that ERRα regulates the tumor stromal cell microenvironment to enhance tumor progression. Taken together, our data demonstrate that ERRα is a regulator of CRPC cell progression in bone. Therefore, inhibiting ERRα may constitute a new therapeutic strategy for prostate cancer skeletal-related events.


Assuntos
Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/secundário , Neoplasias de Próstata Resistentes à Castração/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Neoplasias Ósseas/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Transplante de Neoplasias , Neoplasias de Próstata Resistentes à Castração/genética , Receptores de Estrogênio/genética , Transdução de Sinais , Fator de Crescimento Transformador beta1/metabolismo , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Wnt-5a/metabolismo , Receptor ERRalfa Relacionado ao Estrogênio
10.
Matrix Biol ; 52-54: 60-77, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26763578

RESUMO

Bone Sialoprotein (BSP) is a member of the "Small Integrin-Binding Ligand N-linked Glycoproteins" (SIBLING) extracellular matrix protein family of mineralized tissues. BSP has been less studied than other SIBLING proteins such as Osteopontin (OPN), which is coexpressed with it in several skeletal cell types. Here we review the contribution of genetically engineered mice (BSP gene knockout and overexpression) to the understanding of the role of BSP in the bone organ. The studies made so far highlight the role of BSP in skeletal mineralization, as well as its importance for proper osteoblast and osteoclast differentiation and activity, most prominently in primary/repair bone. The absence of BSP also affects the local environment of the bone tissue, in particular hematopoiesis and vascularization. Interestingly, lack of BSP induces an overexpression of OPN, and the cognate protein could be responsible for some aspects of the BSP gene knockout skeletal phenotype, while replacing BSP for some of its functions. Such interplay between the partly overlapping functions of SIBLING proteins, as well as the network of cross-regulations in which they are involved should now be the focus of further work.


Assuntos
Osso e Ossos/fisiologia , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Dente/fisiologia , Animais , Calcificação Fisiológica , Diferenciação Celular , Humanos , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoclastos/citologia , Osteopontina/metabolismo
11.
eNeuro ; 2(2)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26464974

RESUMO

Src is a nonreceptor protein tyrosine kinase that is expressed widely throughout the central nervous system and is involved in diverse biological functions. Mice homozygous for a spontaneous mutation in Src (Src (thl/thl) ) exhibited hypersociability and hyperactivity along with impairments in visuospatial, amygdala-dependent, and motor learning as well as an increased startle response to loud tones. The phenotype of Src (thl/thl) mice showed significant overlap with Williams-Beuren syndrome (WBS), a disorder caused by the deletion of several genes, including General Transcription Factor 2-I (GTF2I). Src phosphorylation regulates the movement of GTF2I protein (TFII-I) between the nucleus, where it is a transcriptional activator, and the cytoplasm, where it regulates trafficking of transient receptor potential cation channel, subfamily C, member 3 (TRPC3) subunits to the plasma membrane. Here, we demonstrate altered cellular localization of both TFII-I and TRPC3 in the Src mutants, suggesting that disruption of Src can phenocopy behavioral phenotypes observed in WBS through its regulation of TFII-I.

12.
PLoS One ; 10(2): e0117402, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25710686

RESUMO

Bone sialoprotein (BSP) belongs to the "small integrin-binding ligand N-linked glycoprotein" (SIBLING) family, whose members interact with bone cells and bone mineral. BSP is strongly expressed in bone and we previously showed that BSP knockout (BSP-/-) mice have a higher bone mass than wild type (BSP+/+) littermates, with lower bone remodelling. Because baseline bone formation activity is constitutively lower in BSP-/- mice, we studied the impact of the absence of BSP on in vitro osteogenesis in mouse calvaria cell (MCC) cultures. MCC BSP-/- cultures exhibit fewer fibroblast (CFU-F), preosteoblast (CFU-ALP) and osteoblast colonies (bone nodules) than wild type, indicative of a lower number of osteoprogenitors. No mineralized colonies were observed in BSP-/- cultures, along with little/no expression of either osteogenic markers or SIBLING proteins MEPE or DMP1. Osteopontin (OPN) is the only SIBLING expressed in standard density BSP-/- culture, at higher levels than in wild type in early culture times. At higher plating density, the effects of the absence of BSP were partly rescued, with resumed expression of osteoblast markers and cognate SIBLING proteins, and mineralization of the mutant cultures. OPN expression and amount are further increased in high density BSP-/- cultures, while PHEX and CatB expression are differentiatlly regulated in a manner that may favor mineralization. Altogether, we found that BSP regulates mouse calvaria osteoblast cell clonogenicity, differentiation and activity in vitro in a cell density dependent manner, consistent with the effective skeletogenesis but the low levels of bone formation observed in vivo. The BSP knockout bone microenvironment may alter the proliferation/cell fate of early osteoprogenitors.


Assuntos
Osteogênese , Osteopontina/genética , Crânio/citologia , Animais , Apoptose , Células da Medula Óssea/citologia , Catepsina B/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Feminino , Masculino , Camundongos , Camundongos Knockout , Osteopontina/deficiência , Osteopontina/metabolismo , Endopeptidase Neutra Reguladora de Fosfato PHEX/metabolismo , Crânio/metabolismo
13.
Mol Biol Cell ; 26(5): 832-42, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25568340

RESUMO

Gja1(Jrt)/+ mice carry a mutation in one allele of the gap junction protein α1 gene (Gja1), resulting in a G60S connexin 43 (Cx43) mutant protein that is dominant negative for Cx43 protein production of <50% of wild-type (WT) levels and significantly reduced gap junction formation and function in osteoblasts and other Cx43-expressing cells. Previously we reported that Gja1(Jrt)/+ mice exhibited early-onset osteopenia caused by activation of osteoclasts secondary to activation of osteoblast lineage cells, which expressed increased RANKL and produced an abnormal resorption-stimulating bone matrix high in BSP content. Gja1(Jrt)/+ mice also displayed early and progressive bone marrow atrophy, with a significant increase in bone marrow adiposity versus WT littermates but no increase in adipose tissues elsewhere in the body. BMP2/4 production and signaling were increased in Gja1(Jrt)/+ trabecular bone and osteogenic stromal cell cultures, which contributed to the up-regulated expression of osteoblast-specific markers (e.g., Bsp and Ocn) in Gja1(Jrt)/+ osteoblasts and increased Pparg2 expression in bone marrow-derived adipoprogenitors in vitro. The elevated levels of BMP2/4 signaling in G60S Cx43-containing cells resulted at least in part from elevated levels of cAMP. We conclude that up-regulation of BMP2/4 signaling in trabecular bone and/or stromal cells increases osteoblast-specific marker expression in hyperactive Gja1(Jrt)/+ osteoblasts and may also increase bone marrow adipogenesis by up-regulation of Pparg2 in the Cx43-deficient Gja1(Jrt)/+ mouse model.


Assuntos
Adipogenia , Medula Óssea/metabolismo , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Osso e Ossos/metabolismo , Conexina 43/genética , Osteoblastos/metabolismo , Animais , Biomarcadores/metabolismo , Doenças Ósseas Metabólicas/genética , Medula Óssea/fisiologia , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 4/genética , Masculino , Camundongos , Camundongos Mutantes , Mutação , Transdução de Sinais , Células Estromais/metabolismo , Regulação para Cima
14.
J Cell Physiol ; 230(3): 568-77, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25160656

RESUMO

Osteopontin (OPN) and bone sialoprotein (BSP) are coexpressed in osteoblasts and osteoclasts, and display overlapping properties. We used daily injection of parathyroid hormone 1-84 (iPTH) over the calvaria of BSP knockout (-/-) mice to investigate further their functional specificity and redundancy. iPTH stimulated bone formation in both +/+ and -/- mice, increasing to the same degree periosteum, osteoid and total bone thickness. Expression of OPN, osterix, osteocalcin (OCN) and DMP1 was also increased by iPTH in both genotypes. In contrast to +/+, calvaria cell cultures from -/- mice revealed few osteoblast colonies, no mineralization and little expression of OCN, MEPE or DMP1. In contrast, OPN levels were 5× higher in -/- versus +/+ cultures. iPTH increased alkaline phosphatase (ALP) activity in cell cultures of both genotypes, with higher OCN and the induction of mineralization in -/- cultures. siRNA blocking of OPN expression did not alter the anabolic action of the hormone in BSP +/+ calvaria, while it blunted iPTH effects in -/- mice, reduced to a modest increase in periosteum thickness. In -/- (not +/+) cell cultures, siOPN blocked the stimulation by iPTH of ALP activity and OCN expression, as well as the induction of mineralization. Thus, full expression of either OPN or BSP is necessary for the anabolic effect of PTH at least in the ectopic calvaria injection model. This suggests that OPN may compensate for the lack of BSP in the response to this hormonal challenge, and provides evidence of functional overlap between these cognate proteins.


Assuntos
Sialoproteína de Ligação à Integrina/genética , Osteogênese/genética , Osteopontina/genética , Crânio/crescimento & desenvolvimento , Animais , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Sialoproteína de Ligação à Integrina/antagonistas & inibidores , Sialoproteína de Ligação à Integrina/biossíntese , Camundongos , Osteogênese/efeitos dos fármacos , Osteopontina/antagonistas & inibidores , Osteopontina/biossíntese , Hormônio Paratireóideo/administração & dosagem , RNA Mensageiro/metabolismo , Crânio/efeitos dos fármacos
15.
Bone ; 71: 145-54, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25464126

RESUMO

Bone sialoprotein (BSP) is an anionic phosphoprotein in the extracellular matrix of mineralized tissues, and a promoter of biomineralization and osteoblast development. Previous studies on the Bsp-deficient mouse (Bsp(-/-)) have demonstrated a significant bone and periodontal tissue phenotype in adulthood. However, the role of BSP during early long bone development is not known. To address this, early endochondral ossification in the Bsp(-/-) mouse was studied. Embryonic day 15.5 (E15.5) wild-type (WT) tibiae showed early stages of ossification that were absent in Bsp(-/-) mice. At E16.5, mineralization had commenced in the Bsp(-/-) mice, but staining for mineral was less intense and more dispersed compared with that in WT controls. Tibiae from Bsp(-/-) mice also demonstrated decreased mineralization and shortened length at postnatal day 0.5 (P0.5) compared to WT bones. There was no detectable difference in the number of tartrate-resistant acid phosphatase-positive foci at P0.5, although the P0.5 Bsp(-/-) tibiae had decreased Vegfα expression compared with WT tissue. Due to the shortened tibiae the growth plates were examined and determined to be of normal overall length. However, the length of the resting zone was increased in P0.5 Bsp(-/-) tibiae whereas that of the proliferative zone was decreased, with no change in the hypertrophic zone length of Bsp(-/-) mice. A reduction in cells positive for Ki-67, an S-phase cell-cycle marker, was noted in the proliferative zone. Decreased numbers of TUNEL-positive hypertrophic chondrocytes were also apparent in the Bsp(-/-) tibial growth plates, suggesting decreased apoptosis. Expression of the osteogenic markers Alp1, Col1a1, Sp7, Runx2, and Bglap was reduced in the endochondral bone of the neonatal Bsp(-/-) compared to WT tibiae. These results suggest that BSP is an important and multifaceted protein that regulates both chondrocyte proliferation and apoptosis as well as transition from cartilage to bone during development of endochondral bone.


Assuntos
Desenvolvimento Ósseo , Calcificação Fisiológica , Sialoproteína de Ligação à Integrina/deficiência , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Desenvolvimento Ósseo/genética , Remodelação Óssea , Calcificação Fisiológica/genética , Condrócitos/metabolismo , Regulação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Lâmina de Crescimento/patologia , Lâmina de Crescimento/fisiopatologia , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Camundongos , Microdissecção , Reação em Cadeia da Polimerase em Tempo Real , Tíbia/crescimento & desenvolvimento , Tíbia/metabolismo , Tíbia/fisiopatologia
16.
J Rheumatol ; 42(4): 630-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25512480

RESUMO

OBJECTIVE: Patients with juvenile-onset spondyloarthritis (SpA) may develop ankylosis of the midfoot resembling the spinal changes seen in patients with ankylosing spondylitis (AS). The study of the histopathology of the feet of patients with tarsitis could help us understand the pathogenesis of bone formation in affected structures in the SpA. The objective of our study was to describe the histopathologic characteristics of the midfoot in patients with tarsitis associated with SpA. METHODS: We obtained synovial sheaths, entheses, and bone samples from 20 patients with SpA with midfoot pain/tenderness and swelling. Tissue samples underwent H&E staining; immunohistochemistry for CD3, CD4, CD8, CD68, and CD20 cell identification; and immunofluorescence for bone lineage proteins, including osteocalcin, osteopontin, parathyroid hormone-related protein, bone sialoprotein, and alkaline phosphatase. RESULTS: Slight edema and hyalinization were found in some tendon sheaths, and few inflammatory cells were detected in the entheses. In bones, we found some changes suggesting osteoproliferation, including endochondral and intramembranous ossification, but no inflammatory cells. In entheses showing bone proliferation, we detected osteocalcin and osteopontin in cells with a fibroblast-mesenchymal phenotype, suggesting the induction of entheseal cells toward an osteoblast phenotype. CONCLUSION: Osteoproliferation and abnormal expression of bone lineage proteins, but no inflammatory infiltration, characterize midfoot involvement in patients with SpA. In this sense, tarsitis (or ankylosing tarsitis) resembles the involvement of the spine in patients with AS. Ossification may be in part explained by the differentiation of mesenchymal entheseal cells toward the osteoblastic lineage.


Assuntos
Anquilose/metabolismo , Pé/patologia , Sialoproteína de Ligação à Integrina/metabolismo , Osteocalcina/metabolismo , Osteopontina/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Espondilartrite/metabolismo , Adulto , Fosfatase Alcalina/metabolismo , Anquilose/patologia , Biomarcadores/metabolismo , Osso e Ossos/metabolismo , Estudos Transversais , Feminino , Humanos , Masculino , Espondilartrite/patologia , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Adulto Jovem
17.
J Cell Physiol ; 230(6): 1342-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25502698

RESUMO

Matrix proteins of the SIBLING family interact with bone cells, extracellular matrix and mineral and are thus in a key position to regulate the microenvironment of the bone tissue, including its hematopoietic component. In this respect, osteopontin (OPN) has been implicated in the hematopoietic stem cell (HSC) niche as negative regulator of the HSC function. We investigated the impact on hematopoietic regulation of the absence of the cognate bone sialoprotein (BSP). BSP knockout (-/-) mice display increased bone marrow cellularity, and an altered commitment of hematopoietic precursors to myeloid lineages, leading in particular to an increased frequency of monocyte/macrophage cells. The B cell pool is increased in -/- bone marrow, and its composition is shifted toward more mature lymphocyte stages. BSP-null mice display a decreased HSC fraction among LSK cells and a higher percentage of more committed progenitors as compared to +/+. The fraction of proliferating LSK progenitors is higher in -/- mice, and after PTH treatment the mutant HSC pool is lower than in +/+. Strikingly, circulating levels of OPN as well as its expression in the bone tissue are much higher in the -/-. Thus, a BSP-null bone microenvironment affects the hematopoietic system both quantitatively and qualitatively, in a manner in part opposite to the OPN knockout, suggesting that the effects might in part reflect the higher OPN expression in the absence of BSP.


Assuntos
Medula Óssea/metabolismo , Hematopoese/fisiologia , Sialoproteína de Ligação à Integrina/deficiência , Sialoproteína de Ligação à Integrina/metabolismo , Osteopontina/metabolismo , Animais , Osso e Ossos/metabolismo , Hematopoese/genética , Camundongos , Camundongos Nus , Osteogênese/fisiologia , Ativação Transcricional , Regulação para Cima
18.
PLoS One ; 9(10): e109592, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25313644

RESUMO

To assess the effects of the orphan nuclear Estrogen receptor-related receptor gamma (ERRγ) deficiency on skeletal development and bone turnover, we utilized an ERRγ global knockout mouse line. While we observed no gross morphological anomalies or difference in skeletal length in newborn mice, by 8 weeks of age ERRγ +/- males but not females exhibited increased trabecular bone, which was further increased by 14 weeks. The increase in trabecular bone was due to an increase in active osteoblasts on the bone surface, without detectable alterations in osteoclast number or activity. Consistent with the histomorphometric results, we observed an increase in gene expression of the bone formation markers alkaline phosphatase (Alp) and bone sialoprotein (Bsp) in bone and increase in serum ALP, but no change in the osteoclast regulators receptor activator of NF-κB ligand (RANKL) and osteoprotegerin (OPG) or the resorption marker carboxy-terminal collagen crosslinks (CTX). More colony forming units-alkaline phosphatase and -osteoblast (CFU-ALP, CFU-O respectively) but not CFU-fibroblast (CFU-F) formed in ERRγ +/- versus ERRγ +/+ stromal cell cultures, suggesting that ERRγ negatively regulates osteoblast differentiation and matrix mineralization but not mesenchymal precursor number. By co-immunoprecipitation experiments, we found that ERRγ and RUNX2 interact in an ERRγ DNA binding domain (DBD)-dependent manner. Treatment of post-confluent differentiating bone marrow stromal cell cultures with Runx2 antisense oligonucleotides resulted in a reduction of CFU-ALP/CFU-O in ERRγ +/- but not ERRγ +/+ mice compared to their corresponding sense controls. Our data indicate that ERRγ is not required for skeletal development but is a sex-dependent negative regulator of postnatal bone formation, acting in a RUNX2- and apparently differentiation stage-dependent manner.


Assuntos
Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Receptores de Estrogênio/metabolismo , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Animais , Desenvolvimento Ósseo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Diferenciação Celular , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/antagonistas & inibidores , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Fêmur/diagnóstico por imagem , Fêmur/patologia , Sialoproteína de Ligação à Integrina/genética , Sialoproteína de Ligação à Integrina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Oligonucleotídeos Antissenso/metabolismo , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/genética , Tomografia Computadorizada por Raios X
19.
PLoS One ; 9(5): e95144, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24816232

RESUMO

Adult Ibsp-knockout mice (BSP-/-) display shorter stature, lower bone turnover and higher trabecular bone mass than wild type, the latter resulting from impaired bone resorption. Unexpectedly, BSP knockout also affects reproductive behavior, as female mice do not construct a proper "nest" for their offsprings. Multiple crossing experiments nonetheless indicated that the shorter stature and lower weight of BSP-/- mice, since birth and throughout life, as well as their shorter femur and tibia bones are independent of the genotype of the mothers, and thus reflect genetic inheritance. In BSP-/- newborns, µCT analysis revealed a delay in membranous primary ossification, with wider cranial sutures, as well as thinner femoral cortical bone and lower tissue mineral density, reflected in lower expression of bone formation markers. However, trabecular bone volume and osteoclast parameters of long bones do not differ between genotypes. Three weeks after birth, osteoclast number and surface drop in the mutants, concomitant with trabecular bone accumulation. The growth plates present a thinner hypertrophic zone in newborns with lower whole bone expression of IGF-1 and higher IHH in 6 days old BSP-/- mice. At 3 weeks the proliferating zone is thinner and the hypertrophic zone thicker in BSP-/- than in BSP+/+ mice of either sex, maybe reflecting a combination of lower chondrocyte proliferation and impaired cartilage resorption. Six days old BSP-/- mice display lower osteoblast marker expression but higher MEPE and higher osteopontin(Opn)/Runx2 ratio. Serum Opn is higher in mutants at day 6 and in adults. Thus, lack of BSP alters long bone growth and membranous/cortical primary bone formation and mineralization. Endochondral development is however normal in mutant mice and the accumulation of trabecular bone observed in adults develops progressively in the weeks following birth. Compensatory high Opn may allow normal endochondral development in BSP-/- mice, while impairing primary mineralization.


Assuntos
Desenvolvimento Ósseo/genética , Lâmina de Crescimento/metabolismo , Osteogênese/genética , Osteopontina/genética , Animais , Animais Recém-Nascidos , Comportamento Animal , Reabsorção Óssea/genética , Feminino , Fêmur/crescimento & desenvolvimento , Fêmur/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Lâmina de Crescimento/crescimento & desenvolvimento , Proteínas Hedgehog/genética , Fator de Crescimento Insulin-Like I/genética , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteopontina/sangue , Osteopontina/deficiência , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tíbia/crescimento & desenvolvimento , Tíbia/metabolismo
20.
J Cell Biochem ; 115(10): 1646-58, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24818806

RESUMO

The processes of bone modeling and remodeling are crucial in the skeleton's functions as a supportive and protective structure, a mineral reservoir, and an endocrine organ. The coordination between bone cell activities (bone formation and bone resorption), necessary to maintain the integrity of the skeleton during these processes, is mediated at least in part by cell-cell and cell-environment interactions across gap junctions and hemichannels. The increasing number of genetically engineered Connexin 43 (Cx43) knockout and missense mouse models have provided insight into the complex and critical roles of Cx43-containing gap junctions and hemichannels in the development and turnover of the skeleton, in differentiation, activity and survival of the bone cell lineages, and in the cellular and molecular mechanisms by which Cx43 functions and assists in mediating cellular responses to stimuli in bone. Cx43 may be an important potential therapeutic target, making it crucial that we continue to gain understanding of the multiple and complex roles of Cx43 in bone.


Assuntos
Desenvolvimento Ósseo/fisiologia , Remodelação Óssea/fisiologia , Osso e Ossos/citologia , Conexina 43/genética , Osteogênese/fisiologia , Animais , Diferenciação Celular , Junções Comunicantes/fisiologia , Humanos , Camundongos , Osteoblastos/citologia , Osteoclastos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...